Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Proc Natl Acad Sci U S A ; 121(17): e2307814121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38621131

ABSTRACT

Efforts to genetically reverse C9orf72 pathology have been hampered by our incomplete understanding of the regulation of this complex locus. We generated five different genomic excisions at the C9orf72 locus in a patient-derived induced pluripotent stem cell (iPSC) line and a non-diseased wild-type (WT) line (11 total isogenic lines), and examined gene expression and pathological hallmarks of C9 frontotemporal dementia/amyotrophic lateral sclerosis in motor neurons differentiated from these lines. Comparing the excisions in these isogenic series removed the confounding effects of different genomic backgrounds and allowed us to probe the effects of specific genomic changes. A coding single nucleotide polymorphism in the patient cell line allowed us to distinguish transcripts from the normal vs. mutant allele. Using digital droplet PCR (ddPCR), we determined that transcription from the mutant allele is upregulated at least 10-fold, and that sense transcription is independently regulated from each allele. Surprisingly, excision of the WT allele increased pathologic dipeptide repeat poly-GP expression from the mutant allele. Importantly, a single allele was sufficient to supply a normal amount of protein, suggesting that the C9orf72 gene is haplo-sufficient in induced motor neurons. Excision of the mutant repeat expansion reverted all pathology (RNA abnormalities, dipeptide repeat production, and TDP-43 pathology) and improved electrophysiological function, whereas silencing sense expression did not eliminate all dipeptide repeat proteins, presumably because of the antisense expression. These data increase our understanding of C9orf72 gene regulation and inform gene therapy approaches, including antisense oligonucleotides (ASOs) and CRISPR gene editing.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Humans , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Alleles , Amyotrophic Lateral Sclerosis/metabolism , Frontotemporal Dementia/metabolism , Motor Neurons/metabolism , Mutation , DNA Repeat Expansion/genetics , Dipeptides/metabolism
2.
J Colloid Interface Sci ; 638: 39-53, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36731217

ABSTRACT

The increasing consumption of room-temperature ionic liquids (RTILs) inevitably releases RTILs into the water environment, posing serious threats to aquatic ecology due to the toxicities of RTILs. Thus, urgent needs are necessitated for developing useful processes for removing RTILs from water, and 1-butyl-3-methylimidazolium chloride (C4mimCl), the most common RTIL, would be the most representative RTIL for studying the removal of RTILs from water. As advanced oxidation processes with hydrogen peroxide (HP) are validated as useful approaches for eliminating emerging contaminants, developing advantageous heterogeneous catalysts for activating HP is the key to the successful degradation of C4mim. Herein, a hierarchical structure is fabricated by growing Cu2S on copper mesh (CSCM) utilizing CM as a Cu source. Compared to its precursor, CuO@CM, this CSCM exhibited tremendously higher catalytic activity for catalyzing HP to degrade C4mim efficiently because CSCM exhibits much more superior electrochemical properties and reactive sites, allowing CSCM to degrade C4mim rapidly. CSCM also exhibits a smaller Ea of C4mim elimination than all values in the literature. CSCM also shows a high capacity and stability for activating HP to degrade C4mim in the presence of NaCl and seawater. Besides, the mechanistic investigation of C4mim elimination by CSCM-activated HP has also been clarified and ascribed to OH and 1O2. The elimination route could also be examined and disclosed in detail through the quantum computational chemistry, confirming that CSCM is a useful catalyst for catalyzing HP to degrade RTILs.


Subject(s)
Ionic Liquids , Ionic Liquids/chemistry , Water , Copper , Temperature , Surgical Mesh , Hydrogen Peroxide/chemistry
3.
Nanomaterials (Basel) ; 12(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36558250

ABSTRACT

As cobalt (Co) has been the most useful element for activating Oxone to generate SO4•-, this study aims to develop a hierarchical catalyst with nanoscale functionality and macroscale convenience by decorating nanoscale Co-based oxides on macroscale supports. Specifically, a facile protocol is proposed by utilizing Cu mesh itself as a Cu source for fabricating CuCo2O4 on Cu mesh. By changing the dosages of the Co precursor and carbamide, various nanostructures of CuCo2O4 grown on a Cu mesh can be afforded, including nanoscale needles, flowers, and sheets. Even though the Cu mesh itself can be also transformed to a Cu-Oxide mesh, the growth of CuCo2O4 on the Cu mesh significantly improves its physical, chemical, and electrochemical properties, making these CuCo2O4@Cu meshes much more superior catalysts for activating Oxone to degrade the Azo toxicant, Acid Red 27. More interestingly, the flower-like CuCo2O4@Cu mesh exhibits a higher specific surface area and more superior electrochemical performance, enabling the flower-like CuCo2O4@Cu mesh to show the highest catalytic activity for Oxone activation to degrade Acid Red 27. The flower-like CuCo2O4@Cu mesh also exhibits a much lower Ea of Acid Red 27 degradation than the reported catalysts. These results demonstrate that CuCo2O4@Cu meshes are advantageous heterogeneous catalysts for Oxone activation, and especially, the flower-like CuCo2O4@Cu mesh appears as the most effective CuCo2O4@Cu mesh to eliminate the toxic Acid Red 27.

4.
J Mol Diagn ; 24(11): 1143-1154, 2022 11.
Article in English | MEDLINE | ID: mdl-36084803

ABSTRACT

Myotonic dystrophy type 1 (DM1) exhibits highly heterogeneous clinical manifestations caused by an unstable CTG repeat expansion reaching up to 4000 CTG. The clinical variability depends on CTG repeat number, CNG repeat interruptions, and somatic mosaicism. Currently, none of these factors are simultaneously and accurately determined due to the limitations of gold standard methods used in clinical and research laboratories. An amplicon method for targeting the DMPK locus using single-molecule real-time sequencing was recently developed to accurately analyze expanded alleles. However, amplicon-based sequencing still depends on PCR, and the inherent bias toward preferential amplification of smaller repeats can be problematic in DM1. Thus, an amplification-free long-read sequencing method was developed by using CRISPR/Cas9 technology in DM1. This method was used to sequence the DMPK locus in patients with CTG repeat expansion ranging from 130 to >1000 CTG. We showed that elimination of PCR amplification improves the accuracy of measurement of inherited repeat number and somatic repeat variations, two key factors in DM1 severity and age at onset. For the first time, an expansion composed of >85% CCG repeats was identified by using this innovative method in a DM1 family with an atypical clinical profile. No-amplification targeted sequencing represents a promising method that can overcome research and diagnosis shortcomings, with translational implications for clinical and genetic counseling in DM1.


Subject(s)
Myotonic Dystrophy , Humans , Myotonic Dystrophy/diagnosis , Myotonic Dystrophy/genetics , Myotonin-Protein Kinase/genetics , Alleles , Trinucleotide Repeat Expansion/genetics , Genetic Counseling
5.
HGG Adv ; 3(4): 100137, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36092952

ABSTRACT

Spinocerebellar ataxia type 10 (SCA10) is an autosomal-dominant disorder caused by an expanded pentanucleotide repeat in the ATXN10 gene. This repeat expansion, when fully penetrant, has a size of 850-4,500 repeats. It has been shown that the repeat composition can be a modifier of disease, e.g., seizures. Here, we describe a Mexican kindred in which we identified both pure (ATTCT)n and mixed (ATTCT)n-(ATTCC)n expansions in the same family. We used amplification-free targeted sequencing and optical genome mapping to decipher the composition of these repeat expansions. We found a considerable degree of mosaicism of the repeat expansion. This mosaicism was confirmed in skin fibroblasts from individuals with ATXN10 expansions with RNAScope in situ hybridization. All affected family members with the mixed ATXN10 repeat expansion showed typical clinical signs of spinocerebellar ataxia and epilepsy. In contrast, individuals with the pure ATXN10 expansion present with Parkinson's disease or are unaffected, even in individuals more than 20 years older than the average age at onset for SCA10. Our findings suggest that the pure (ATTCT)n expansion is non-pathogenic, while repeat interruptions, e.g., (ATTCC)n, are necessary to cause SCA10. This mechanism has been recently described for several other repeat expansions including SCA31 (BEAN1), SCA37 (DAB1), and three loci for benign adult familial myoclonic epilepsy BAFME (SAMD12, TNRC6A, RAPGEF2). Therefore, long-read sequencing and optical genome mapping of the entire genomic structure of repeat expansions are critical for clinical practice and genetic counseling, as variations in the repeat can affect disease penetrance, symptoms, and disease trajectory.

6.
J Colloid Interface Sci ; 602: 95-104, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34118608

ABSTRACT

Metal Organic Frameworks (MOFs) represent a promising class of metallic catalysts for reduction of nitrogen-containing contaminants (NCCs), such as 4-nitrophenol (4-NP). Nevertheless, most researches involving MOFs for 4-NP reduction employ noble metals in the form of fine powders, making these powdered noble metal-based MOFs impractical and inconvenient for realistic applications. Thus, it would be critical to develop non-noble-metal MOFs which can be incorporated into macroscale and porous supports for convenient applications. Herein, the present study proposes to develop a composite material which combines advantageous features of macroscale/porous supports, and nanoscale functionality of MOFs. In particular, copper foam (CF) is selected as a macroscale porous medium, which is covered by nanoflower-structured CoO to increase surfaces for growing a cobaltic MOF, ZIF-67. The resultant composite comprises of CF covered by CoO nanoflowers decorated with ZIF-67 to form a hierarchical 3D-structured catalyst, enabling this ZIF-67@Cu foam (ZIF@CF) a promising catalyst for reducing 4-NP, and other NCCs. Thus, ZIF@CF can readily reduce 4-NP to 4-AP with a significantly lower Ea of 20 kJ/mol than reported values. ZIF@CF could be reused over 10 cycles and remain highly effective for 4-NP reduction. ZIF@CF also efficiently reduces other NCCs, such as 2-nitrophenol, 3-nitrophenol, methylene blue, and methyl orange. ZIF@CF can be adopted as catalytic filters to enable filtration-type reduction of NCCs by passing NCC solutions through ZIF@CF to promptly and conveniently reduce NCCs. The versatile and advantageous catalytic activity of ZIF@CF validates that ZIF@CF is a promising and practical heterogeneous catalyst for reductive treatments of NCCs.


Subject(s)
Metal-Organic Frameworks , Nitrogen , Catalysis , Cobalt , Metals
7.
Int J Mol Sci ; 22(5)2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33807660

ABSTRACT

Myotonic dystrophy type 1 (DM1) is the most complex and variable trinucleotide repeat disorder caused by an unstable CTG repeat expansion, reaching up to 4000 CTG in the most severe cases. The genetic and clinical variability of DM1 depend on the sex and age of the transmitting parent, but also on the CTG repeat number, presence of repeat interruptions and/or on the degree of somatic instability. Currently, it is difficult to simultaneously and accurately determine these contributing factors in DM1 patients due to the limitations of gold standard methods used in molecular diagnostics and research laboratories. Our study showed the efficiency of the latest PacBio long-read sequencing technology to sequence large CTG trinucleotides, detect multiple and single repeat interruptions and estimate the levels of somatic mosaicism in DM1 patients carrying complex CTG repeat expansions inaccessible to most methods. Using this innovative approach, we revealed the existence of de novo CCG interruptions associated with CTG stabilization/contraction across generations in a new DM1 family. We also demonstrated that our method is suitable to sequence the DM1 locus and measure somatic mosaicism in DM1 families carrying more than 1000 pure CTG repeats. Better characterization of expanded alleles in DM1 patients can significantly improve prognosis and genetic counseling, not only in DM1 but also for other tandem DNA repeat disorders.


Subject(s)
High-Throughput Nucleotide Sequencing , Mosaicism , Myotonic Dystrophy/genetics , Trinucleotide Repeat Expansion , Adult , Female , Humans , Male , Middle Aged
8.
Sci Data ; 7(1): 399, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33203859

ABSTRACT

The PacBio® HiFi sequencing method yields highly accurate long-read sequencing datasets with read lengths averaging 10-25 kb and accuracies greater than 99.5%. These accurate long reads can be used to improve results for complex applications such as single nucleotide and structural variant detection, genome assembly, assembly of difficult polyploid or highly repetitive genomes, and assembly of metagenomes. Currently, there is a need for sample data sets to both evaluate the benefits of these long accurate reads as well as for development of bioinformatic tools including genome assemblers, variant callers, and haplotyping algorithms. We present deep coverage HiFi datasets for five complex samples including the two inbred model genomes Mus musculus and Zea mays, as well as two complex genomes, octoploid Fragaria × ananassa and the diploid anuran Rana muscosa. Additionally, we release sequence data from a mock metagenome community. The datasets reported here can be used without restriction to develop new algorithms and explore complex genome structure and evolution. Data were generated on the PacBio Sequel II System.


Subject(s)
High-Throughput Nucleotide Sequencing , Mice/genetics , Zea mays/genetics , Animals , Fragaria/genetics , Genome, Plant , Metagenome , Ranidae/genetics , Sequence Analysis, DNA
9.
Microbiol Resour Announc ; 9(24)2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32527783

ABSTRACT

Lymphatic filariasis affects ∼120 million people and can result in elephantiasis and hydrocele. Here, we report the nearly complete genome sequence of the best-studied causative agent of lymphatic filariasis, Brugia malayi The assembly contains four autosomes, an X chromosome, and only eight gaps but lacks a contiguous sequence for the known Y chromosome.

11.
Nat Commun ; 11(1): 1964, 2020 04 23.
Article in English | MEDLINE | ID: mdl-32327641

ABSTRACT

Sex determination mechanisms often differ even between related species yet the evolution of sex chromosomes remains poorly understood in all but a few model organisms. Some nematodes such as Caenorhabditis elegans have an XO sex determination system while others, such as the filarial parasite Brugia malayi, have an XY mechanism. We present a complete B. malayi genome assembly and define Nigon elements shared with C. elegans, which we then map to the genomes of other filarial species and more distantly related nematodes. We find a remarkable plasticity in sex chromosome evolution with several distinct cases of neo-X and neo-Y formation, X-added regions, and conversion of autosomes to sex chromosomes from which we propose a model of chromosome evolution across different nematode clades. The phylum Nematoda offers a new and innovative system for gaining a deeper understanding of sex chromosome evolution.


Subject(s)
Evolution, Molecular , Nematoda/genetics , Nematode Infections/parasitology , Sex Chromosomes/genetics , Animals , Brugia malayi/genetics , Caenorhabditis elegans/genetics , Chromosome Mapping , Female , Gene Expression Regulation , Genome, Helminth/genetics , Humans , Male , Nematoda/classification , Repetitive Sequences, Nucleic Acid/genetics , Sex Determination Processes/genetics
12.
PLoS One ; 15(3): e0228789, 2020.
Article in English | MEDLINE | ID: mdl-32160188

ABSTRACT

Large expansions of microsatellite DNA cause several neurological diseases. In Spinocerebellar ataxia type 10 (SCA10), the repeat interruptions change disease phenotype; an (ATTCC)n or a (ATCCT)n/(ATCCC)n interruption within the (ATTCT)n repeat is associated with the robust phenotype of ataxia and epilepsy while mostly pure (ATTCT)n may have reduced penetrance. Large repeat expansions of SCA10, and many other microsatellite expansions, can exceed 10,000 base pairs (bp) in size. Conventional next generation sequencing (NGS) technologies are ineffective in determining internal sequence contents or size of these expanded repeats. Using repeat primed PCR (RP-PCR) in conjunction with a high-sensitivity pulsed-field capillary electrophoresis fragment analyzer (FEMTO-Pulse, Agilent, Santa Clara, CA) (RP-FEMTO hereafter), we successfully determined sequence content of large expansion repeats in genomic DNA of SCA10 patients and transformed yeast artificial chromosomes containing SCA10 repeats. This RP-FEMTO is a simple and economical methodology which could complement emerging NGS for very long sequence reads such as Single Molecule, Real-Time (SMRT) and nanopore sequencing technologies.


Subject(s)
Ataxin-10/genetics , Electrophoresis, Capillary/methods , Microsatellite Repeats/genetics , Spinocerebellar Ataxias/genetics , Adult , Aged , Aged, 80 and over , DNA Repeat Expansion/genetics , Female , Humans , Male , Middle Aged , Phenotype
13.
J Colloid Interface Sci ; 561: 83-92, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31812869

ABSTRACT

While Co3O4 represents one of the most promising catalysts for soot oxidation, conventional Co3O4 nanoparticles (NPs) tend to aggregate, losing their activities. Herein, an alternative approach is proposed for preparing three-dimensional nanostructured Co3O4 (NSCo) using the hierarchically-structured Co-based Metal Organic Frameworks as a precursor. Specifically, ZIF-67 is chosen as the precursor as ZIF-67 can be conveniently synthesized with high yields and it can be easily converted to NSCo via calcination. The resulting NSCo exhibits a unique morphology which enables NSCo to possess more porosities and surface areas than the typical Co3O4 NPs. Consequently, NSCo shows a much higher catalytic activity than the typical Co3O4 NPs for soot oxidation because of superior textural properties of NSCo. Besides, when the soot oxidation by the typical Co3O4 NPs produced a significant amount of unwanted CO, soot can be completely combusted into CO2 using NSCo. In comparison with other reported Co-related catalysts, NSCo also achieves a higher soot oxidation efficiency (100% conversion) at lower temperatures with Tig of 331 °C. NSCo can be reused over many continuous cycles and still retains its catalytic activities. These features validate that NSCo is an easy-to-prepare 3D nanostructured Co3O4 catalyst, which possesses advantageous capabilities for soot oxidation at lower temperatures.

14.
Nat Med ; 25(6): 1012-1021, 2019 06.
Article in English | MEDLINE | ID: mdl-31142849

ABSTRACT

The incidence of preterm birth exceeds 10% worldwide. There are significant disparities in the frequency of preterm birth among populations within countries, and women of African ancestry disproportionately bear the burden of risk in the United States. In the present study, we report a community resource that includes 'omics' data from approximately 12,000 samples as part of the integrative Human Microbiome Project. Longitudinal analyses of 16S ribosomal RNA, metagenomic, metatranscriptomic and cytokine profiles from 45 preterm and 90 term birth controls identified harbingers of preterm birth in this cohort of women predominantly of African ancestry. Women who delivered preterm exhibited significantly lower vaginal levels of Lactobacillus crispatus and higher levels of BVAB1, Sneathia amnii, TM7-H1, a group of Prevotella species and nine additional taxa. The first representative genomes of BVAB1 and TM7-H1 are described. Preterm-birth-associated taxa were correlated with proinflammatory cytokines in vaginal fluid. These findings highlight new opportunities for assessment of the risk of preterm birth.


Subject(s)
Microbiota , Premature Birth/microbiology , Vagina/microbiology , Adult , Black or African American , Biodiversity , Cohort Studies , Cytokines/metabolism , Female , Host Microbial Interactions/immunology , Humans , Infant, Newborn , Inflammation Mediators/metabolism , Longitudinal Studies , Metagenomics , Microbiota/genetics , Microbiota/immunology , Premature Birth/etiology , Premature Birth/immunology , Risk Factors , United States , Vagina/immunology , Young Adult
15.
Genet Med ; 21(9): 2092-2102, 2019 09.
Article in English | MEDLINE | ID: mdl-30733599

ABSTRACT

PURPOSE: To demonstrate the utility of an amplification-free long-read sequencing method to characterize the Fuchs endothelial corneal dystrophy (FECD)-associated intronic TCF4 triplet repeat (CTG18.1). METHODS: We applied an amplification-free method, utilizing the CRISPR/Cas9 system, in combination with PacBio single-molecule real-time (SMRT) long-read sequencing, to study CTG18.1. FECD patient samples displaying a diverse range of CTG18.1 allele lengths and zygosity status (n = 11) were analyzed. A robust data analysis pipeline was developed to effectively filter, align, and interrogate CTG18.1-specific reads. All results were compared with conventional polymerase chain reaction (PCR)-based fragment analysis. RESULTS: CRISPR-guided SMRT sequencing of CTG18.1 provided accurate genotyping information for all samples and phasing was possible for 18/22 alleles sequenced. Repeat length instability was observed for all expanded (≥50 repeats) phased CTG18.1 alleles analyzed. Furthermore, higher levels of repeat instability were associated with increased CTG18.1 allele length (mode length ≥91 repeats) indicating that expanded alleles behave dynamically. CONCLUSION: CRISPR-guided SMRT sequencing of CTG18.1 has revealed novel insights into CTG18.1 length instability. Furthermore, this study provides a framework to improve the molecular diagnostic accuracy for CTG18.1-mediated FECD, which we anticipate will become increasingly important as gene-directed therapies are developed for this common age-related and sight threatening disease.


Subject(s)
Fuchs' Endothelial Dystrophy/genetics , Genetic Predisposition to Disease , Transcription Factor 4/genetics , Trinucleotide Repeat Expansion/genetics , Adult , Aged , Aged, 80 and over , Alleles , CRISPR-Cas Systems/genetics , Female , Fuchs' Endothelial Dystrophy/pathology , Genotype , Humans , Introns/genetics , Male , Middle Aged , Sequence Analysis, DNA , Single Molecule Imaging , Trinucleotide Repeats/genetics
17.
Sci Rep ; 8(1): 8924, 2018 06 12.
Article in English | MEDLINE | ID: mdl-29895987

ABSTRACT

We sequenced the Hyposidra talaca NPV (HytaNPV) double stranded circular DNA genome using PacBio single molecule sequencing technology. We found that the HytaNPV genome is 139,089 bp long with a GC content of 39.6%. It encodes 141 open reading frames (ORFs) including the 37 baculovirus core genes, 25 genes conserved among lepidopteran baculoviruses, 72 genes known in baculovirus, and 7 genes unique to the HytaNPV genome. It is a group II alphabaculovirus that codes for the F protein and lacks the gp64 gene found in group I alphabaculovirus viruses. Using RNA-seq, we confirmed the expression of the ORFs identified in the HytaNPV genome. Phylogenetic analysis showed HytaNPV to be closest to BusuNPV, SujuNPV and EcobNPV that infect other tea pests, Buzura suppressaria, Sucra jujuba, and Ectropis oblique, respectively. We identified repeat elements and a conserved non-coding baculovirus element in the genome. Analysis of the putative promoter sequences identified motif consistent with the temporal expression of the genes observed in the RNA-seq data.


Subject(s)
Genome, Viral/genetics , Moths/virology , Nucleopolyhedroviruses/genetics , Transcriptome/genetics , Whole Genome Sequencing/methods , Amino Acid Sequence , Animals , Base Sequence , Genes, Viral/genetics , Larva/virology , Nucleopolyhedroviruses/classification , Nucleopolyhedroviruses/physiology , Open Reading Frames/genetics , Phylogeny , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid
18.
Hum Mutat ; 39(9): 1262-1272, 2018 09.
Article in English | MEDLINE | ID: mdl-29932473

ABSTRACT

Amplification of DNA is required as a mandatory step during library preparation in most targeted sequencing protocols. This can be a critical limitation when targeting regions that are highly repetitive or with extreme guanine-cytosine (GC) content, including repeat expansions associated with human disease. Here, we used an amplification-free protocol for targeted enrichment utilizing the CRISPR/Cas9 system (No-Amp Targeted sequencing) in combination with single molecule, real-time (SMRT) sequencing for studying repeat elements in the huntingtin (HTT) gene, where an expanded CAG repeat is causative for Huntington disease. We also developed a robust data analysis pipeline for repeat element analysis that is independent of alignment of reads to a reference genome. The method was applied to 11 diagnostic blood samples, and for all 22 alleles the resulting CAG repeat count agreed with previous results based on fragment analysis. The amplification-free protocol also allowed for studying somatic variability of repeat elements in our samples, without the interference of PCR stutter. In summary, with No-Amp Targeted sequencing in combination with our analysis pipeline, we could accurately study repeat elements that are difficult to investigate using PCR-based methods.


Subject(s)
Genome, Human/genetics , Huntingtin Protein/genetics , Huntington Disease/genetics , Trinucleotide Repeat Expansion/genetics , Alleles , Ataxin-10/genetics , C9orf72 Protein/genetics , CRISPR-Cas Systems/genetics , Fragile X Mental Retardation Protein/genetics , High-Throughput Nucleotide Sequencing , Humans , Huntington Disease/pathology , RNA, Guide, Kinetoplastida/genetics , Sequence Analysis, DNA
19.
NPJ Parkinsons Dis ; 3: 27, 2017.
Article in English | MEDLINE | ID: mdl-28890930

ABSTRACT

Large, non-coding pentanucleotide repeat expansions of ATTCT in intron 9 of the ATXN10 gene typically cause progressive spinocerebellar ataxia with or without seizures and present neuropathologically with Purkinje cell loss resulting in symmetrical cerebellar atrophy. These ATXN10 repeat expansions can be interrupted by sequence motifs which have been attributed to seizures and are likely to act as genetic modifiers. We identified a Mexican kindred with multiple affected family members with ATXN10 expansions. Four affected family members showed clinical features of spinocerebellar ataxia type 10 (SCA10). However, one affected individual presented with early-onset levodopa-responsive parkinsonism, and one family member carried a large repeat ATXN10 expansion, but was clinically unaffected. To characterize the ATXN10 repeat, we used a novel technology of single-molecule real-time (SMRT) sequencing and CRISPR/Cas9-based capture. We sequenced the entire span of ~5.3-7.0 kb repeat expansions. The Parkinson's patient carried an ATXN10 expansion with no repeat interruption motifs as well as an unaffected sister. In the siblings with typical SCA10, we found a repeat pattern of ATTCC repeat motifs that have not been associated with seizures previously. Our data suggest that the absence of repeat interruptions is likely a genetic modifier for the clinical presentation of l-Dopa responsive parkinsonism, whereas repeat interruption motifs contribute clinically to epilepsy. Repeat interruptions are important genetic modifiers of the clinical phenotype in SCA10. Advanced sequencing techniques now allow to better characterize the underlying genetic architecture for determining accurate phenotype-genotype correlations.

20.
mBio ; 7(1): e01948-15, 2016 Feb 09.
Article in English | MEDLINE | ID: mdl-26861018

ABSTRACT

UNLABELLED: Deep metagenomic shotgun sequencing has emerged as a powerful tool to interrogate composition and function of complex microbial communities. Computational approaches to assemble genome fragments have been demonstrated to be an effective tool for de novo reconstruction of genomes from these communities. However, the resultant "genomes" are typically fragmented and incomplete due to the limited ability of short-read sequence data to assemble complex or low-coverage regions. Here, we use single-molecule, real-time (SMRT) sequencing to reconstruct a high-quality, closed genome of a previously uncharacterized Corynebacterium simulans and its companion bacteriophage from a skin metagenomic sample. Considerable improvement in assembly quality occurs in hybrid approaches incorporating short-read data, with even relatively small amounts of long-read data being sufficient to improve metagenome reconstruction. Using short-read data to evaluate strain variation of this C. simulans in its skin community at single-nucleotide resolution, we observed a dominant C. simulans strain with moderate allelic heterozygosity throughout the population. We demonstrate the utility of SMRT sequencing and hybrid approaches in metagenome quantitation, reconstruction, and annotation. IMPORTANCE: The species comprising a microbial community are often difficult to deconvolute due to technical limitations inherent to most short-read sequencing technologies. Here, we leverage new advances in sequencing technology, single-molecule sequencing, to significantly improve reconstruction of a complex human skin microbial community. With this long-read technology, we were able to reconstruct and annotate a closed, high-quality genome of a previously uncharacterized skin species. We demonstrate that hybrid approaches with short-read technology are sufficiently powerful to reconstruct even single-nucleotide polymorphism level variation of species in this a community.


Subject(s)
Bacteriophages/genetics , Corynebacterium/genetics , Corynebacterium/virology , Metagenomics/methods , Microbiota , Skin/microbiology , Bacteriophages/isolation & purification , Corynebacterium/isolation & purification , High-Throughput Nucleotide Sequencing/methods , Humans , Molecular Sequence Data , Sequence Analysis, DNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...